skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Little, David C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coffeng, Luc E (Ed.)
    The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis’ thermal optimum at 21.7°C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages ofS.mansoniandS.haematobiumand their obligate host snails, i.e.,Biomphalariaspp. andBulinusspp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission ofS.mansoniandS.haematobiumrange between 23.1–27.3°C and 23.6–27.9°C (95% CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum. 
    more » « less
  2. The development of water management infrastructures, such as dams and canals, are important components of society’s response to feed a growing human population and to fight climate change. Yet, these changes in land use can also increase the transmission risk for waterborne diseases. Transmission risk associated with artificial reservoirs has been extensively documented for schistosomiasis, a parasitic disease of poverty that infects more than 240 million people worldwide. Over 90% of these cases are in sub-Saharan Africa, a region that is being steadily reshaped by climate change. Controlling the parasite’s obligate intermediate host snail is key to reducing transmission of this disease. Using commercial aquaculture to farm marketable species which predate upon these snails in vulnerable regions can have multiple positive effects, including the improved socioeconomic and nutritional health of surrounding communities. Here the authors assessed the viability of using the aquaculture of snail predators to simultaneously control schistosomiasis infection rates while alleviating economic and/or nutritional poverty in endemic regions of sub-Saharan Africa. A PRISMA-based 6-step systematic methodology was used to explore the primary literature using the case study of Côte d’Ivoire and two native species of snail predator to make evidence-based conclusions on the viability of this method for controlling schistosomiasis. This detailed thematic examination of the literature concluded that using specific approaches and species, aquaculture could be effective in reducing economic poverty and chronic malnourishment along with high levels of schistosomiasis infection. More current species-specific aquaculture data and consumer survey data are, however, needed to determine the economic and logistical effectiveness of farming native snail predators in-country. These and other opportunities for future research are highlighted. 
    more » « less
  3. Abstract Numerous studies have focused on the need to expand production of ‘blue foods’, defined as aquatic foods captured or cultivated in marine and freshwater systems, to meet rising population- and income-driven demand. Here we analyze the roles of economic, demographic, and geographic factors and preferences in shaping blue food demand, using secondary data from FAO and The World Bank, parameters from published models, and case studies at national to sub-national scales. Our results show a weak cross-sectional relationship between per capita income and consumption globally when using an aggregate fish metric. Disaggregation by fish species group reveals distinct geographic patterns; for example, high consumption of freshwater fish in China and pelagic fish in Ghana and Peru where these fish are widely available, affordable, and traditionally eaten. We project a near doubling of global fish demand by mid-century assuming continued growth in aquaculture production and constant real prices for fish. Our study concludes that nutritional and environmental consequences of rising demand will depend on substitution among fish groups and other animal source foods in national diets. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)